Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¼øȯ¼®È¸È­Àü󸮿¡ ÀÇÇØ ÀλêÄ®½·À» ÄÚÆÃÇÑ Mg meshÀÇ °ñÀç»ý´É Æò°¡

Evaluation of bone regeneration ability of Mg mesh coated with calcium phosphate by cyclic precalcification treatment

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2021³â 48±Ç 4È£ p.229 ~ 244
¹ÚÁ¤Àº, ±è¼­¿µ, ÁöÁ¤Èñ, Àå¿ë¼®, Àü¿ì¿ë, À̹ÎÈ£, ¹èżº,
¼Ò¼Ó »ó¼¼Á¤º¸
¹ÚÁ¤Àº ( Park Jung-Eun ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials
±è¼­¿µ ( Kim Seo-Young ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials
ÁöÁ¤Èñ ( Ji Jeong-Hui ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials
Àå¿ë¼® ( Jang Yong-Seok ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials
Àü¿ì¿ë ( Jeon Woo-Yong ) - Gwangyang Health College Department of Dental Engineering
À̹ÎÈ£ ( Lee Min-Ho ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials
¹èżº ( Bae Tae-Sung ) - Chonbuk National University School of Dentistry Department of Dental Biomaterials

Abstract

º» ¿¬±¸´Â »ýüȯ°æ¿¡¼­ Mg ¸Þ½¬ÀÇ ¿ëÇØ ¾ïÁ¦ ¹× »ýüȰ¼ºµµ °³¼±À» À§ÇØ ½ÃÇàµÇ¾ú´Ù. »ýüȯ°æ¿¡¼­ Mg ¸Þ½¬ÀÇ ¿ëÇظ¦ ¾ïÁ¦Çϱâ À§ÇØ 40 wt% HF ¼ö¿ë¾×¿¡ 2½Ã°£ µ¿¾È ħÁöÇÏ¿© º¸È£ ÄÚÆÃÃþÀ» Çü¼ºÇÏ¿´´Ù. ÀÌÈÄ Mg ¸Þ½¬¿¡ »ýüȰ¼ºÀ» ºÎ¿©Çϱâ À§ÇØ 90 ¡É Ca(NO3)2¡¤4H2O¿Í Na2HPO4 È¥ÇÕ ¼ö¿ë¾×¿¡ 30ºÐ µ¿¾È ħÁöÇÏ´Â ¼ö¿­Ã³¸® ¹× 90 ¡É¿¡¼­ À¯ÁöµÇ´Â0.06 M NH4H2PO4 ¼ö¿ë¾×°ú 0.011 M Ca(OH)2 ¼ö¿ë¾×¿¡¼­ 20ȸ ¼øȯ ¼®È¸È­Àü󸮸¦ ÇÑ ´ÙÀ½ 100 ¡É¿Í 400 ¡É¿¡¼­ ¿­Ã³¸®¸¦ ÇÏ¿´´Ù. ÀÌÈÄ Ç¥¸éÃþ ¿ø¼ÒÀÇ µ¿Á¤À» ÆľÇÇϱâ À§ÇØ X-¼± ȸÀýºÐ¼®À» ½ÃÇàÇÏ¿´°í, ¶ÇÇÑ »ýüȯ°æ¿¡¼­ ¿ëÇصµ ¹× »ýüȰ¼ºµµ¸¦ Á¶»çÇϱâ À§ÇØ SBF ħÁö½ÃÇèÀ» ½Ç½ÃÇÏ¿´´Ù. ¶ÇÇÑ ÀÓÇöõÆ® ½Ä¸³ºÎ¿¡¼­ ÀϾ´Â ÃʱâÀÇ °ñÈí¼ö¸¦ ¾ïÁ¦Çϱâ À§ÇØ À̹ݵå·Î³×ÀÌÆ®¸¦ žÀçÇÑ ´ÙÀ½ ¹æÃâ Ư¼ºÀ» Á¶»çÇÏ¿´´Ù. ¶ÇÇÑ Mg ¸Þ½¬ÀÇ ¸Å½ÄÀÌ »ýü¿¡ ¹ÌÄ¡´Â ¿µÇâ ¹× °ñÀç»ý´É¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡Çϱâ À§ÇØ ½ÃÇèÁãÀÇ µÎºÎ¿¡ °á¼ÕºÎ¸¦ Çü¼ºÇÏ°í Mg ¸Þ½¬¸¦ 4ÁÖ µ¿¾È ¸Å½ÄÇÑ ´ÙÀ½ Ç÷ÁßÀÇ ¿°Áõ¼º »çÀÌÅäÄ«ÀÎÀÇ º¯È­ ¹× ½Å»ý°ñÀÇ ºÎÇÇ¿Í ¹Ðµµ¸¦ Á¶»çÇÏ¿´´Ù. ÀÌ»óÀÇ ½ÃÇèÀ» ÅëÇØ ´ÙÀ½°ú °°Àº °á·ÐÀ» ¾ò¾ú´Ù.
1. ¼ö¿­Ã³¸®ÇÑ Ç¥¸é¿¡¼­´Â ħ»óÀÇ ÀλêÄ®½·ÀÌ ¼®ÃâµÇ¾úÁö¸¸ ¼øȯ ¼®È¸È­Àüó¸®ÇÑ Ç¥¸é¿¡´Â ¹Ì¼¼ÇÑ °ú¸³»óÀÇ ÀλêÄ®½·ÀÌ Å¬·¯½ºÅÍ »óÀ¸·Î ¼®ÃâÀÌ µÇ¾úÀ¸¸ç, SBF ħÁö ÈÄ HA ¼®ÃâÀÇ Ãʱâ´Ü°è¿¡¼­ °üÂûµÇ´Â µ¹±â»óÀÌ ¼®ÃâµÇ¾î »ýüȰ¼ºµµ°¡ °³¼±µÈ °á°ú¸¦ º¸¿´´Ù.
2. 37 ¡É SBF 10 mL¿¡ 7ÀÏ µ¿¾È ħÁöÇßÀ» ¶§ÀÇ pH º¯È­´Â ¼ö¿­Ã³¸®¿Í ¼øȯ ¼®È¸È­Àüó¸® ÈÄ ¼ø¼ö Mg¿¡ ºñÇØ Å©°Ô °¨¼ÒµÇ¾ú´Ù.
3. À̹ݵå·Î³×ÀÌÆ®ÀÇ Å¾Àç ó¸® ½Ã, ¼øȯ ¼®È¸È­Àüó¸® ÈÄ 100 ¡É¿¡¼­ ¿­Ã³¸®ÇÑ ±×·ì(CP-H1)¿¡¼­ 6ÀÏ µ¿¾È¿¡ °ÉÄ£ ¹æÃâÀ» º¸¿´´Ù.
4. Ç÷Áß IL-1¥â¿Í IL-6´Â ¼øȯ ¼®È¸È­Àüó¸® ÈÄ 400 ¡É¿¡¼­ ¿­Ã³¸®ÇÑ ±×·ì(CP-H4)¸¦ Á¦¿ÜÇÏ°í´Â ¸ðµç ½ÃÇè ±×·ì¿¡¼­ ¹«Ã³¸® ´ëÁ¶ ±×·ì¿¡ ºñÇØ À¯ÀÇÇÏ°Ô ³·°Ô ³ªÅ¸³µ´Ù(P<0.05).
5. micro-CT ºÐ¼® °á°ú, ½Å»ý°ñÀÇ ºÎÇÇ¿Í ¹Ðµµ´Â ¼øȯ ¼®È¸È­Àüó¸® ÈÄ 100 ¡É¿¡¼­ ¿­Ã³¸®ÇÑ ±×·ì(CP-H1)¿¡¼­ Åë°èÇÐÀû À¸·Î À¯ÀÇÇÏ°Ô ³ô°Ô ³ªÅ¸³µ´Ù.
ÀÌ»óÀÇ °á°ú·Î ¹Ì·ç¾îº¼ ¶§, »ýüȯ°æ¿¡¼­ Mg ¸Þ½¬ÀÇ ¿ëÇØ ¾ïÁ¦ ¹× »ýüȰ¼ºµµÀÇ °³¼±À» À§Çؼ­ ºÒ¼Ò º¸È£ÇǸ·ÃþÀ» Çü¼ºÇÏ°í ¼øȯ ¼®È¸È­Àü󸮸¦ ÇÏ¿© ÀλêÄ®½·À» ¼®ÃâÇÏ´Â °ÍÀº °ñÀç»ý À¯µµÀÇ À¯¿ëÇÑ ¼ö´ÜÀÌ µÉ ¼ö ÀÖÀ» °ÍÀ¸·Î »ý°¢µÈ´Ù.

Surface treatment was conducted to reduce dissolution of Mg mesh and to improve bioactivity in physiological environment. Mg mesh was immersed in 40 wt% hydrofluoric (HF) solution for 2 hours to form a protective coating layer. Then, hydrothermal treatment was performed in a mixed solution of Ca(NO3)2¡¤4H2O and Na2HPO4 at 90 ¡É for 30 minutes, and cyclic precalcification treatment was conducted by soaking in each 0.06 M NH4H2PO4 solution and 0.011 M Ca(OH)2 solution in turn at 90 ¡É. Immersion test was performed in simulated body fluid (SBF) to investigate solubility and bioactivity. Release characteristics were investigated after loading ibandronate to suppress initial bone resorption. Bone regeneration ability was evaluated through micro-CT analysis and conforming inflammatory cytokines levels in blood. Fine granular calcium phosphate-based materials were precipitated as clusters on the surface treated in cyclic precalcification. Agglomerated calcium phosphate precipitates on the surface were observed after SBF immersion. pH in SBF during immersion increased slowly in hydrothermal treatment and cyclic precalcification groups compared to pure Mg group. Release of ibandronate occurred over 6 days in cyclic precalcification treatment group (CP-H1). IL-1¥â and IL-6 were significantly lower than those of untreated group in all test groups except for the group (CP-H4) that was heat-treated at 400 ¡É after pretreatment with circulating calcification. As a result of micro-CT analysis, the new bone volume and density were significantly higher in the CP-H1 group. It was concluded that cyclic precalcification treatment after formation of fluorine protective layer on Mg mesh could retard the dissolution and enhanced bone regeneration ability.

Å°¿öµå

¸¶±×³×½·; ¼øȯ¼®È¸È­Àüó¸®; ÀλêÄ®½·; °ñÀç»ý
Magnesium; Cyclic precalcification; Calcium phosphate; Bone regeneration

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI